Quadratic formula
If
Triangle of base | Area | |
---|---|---|
Circle of radius | Circumference | Area |
Sphere of radius | Surface area | Volume |
Cylinder of radius | Area of curved surface | Volume |
TableE1 Geometry
Trigonometry
Trigonometric Identities
sinθ=1/cscθ cosθ=1/secθ tanθ=1/cotθ sin(900−θ)=cosθ cos(900−θ)=sinθ tan(900−θ)=cotθ sin2θ+cos2θ=1 sec2θ−tan2θ=1 tanθ=sinθ/cosθ sin(α±β)=sinαcosβ±cosαsinβ cos(α±β)=cosαcosβ∓sinαsinβ tan(α±β)=tanα±tanβ1∓tanαtanβ sin2θ=2sinθcosθ cos2θ=cos2θ−sin2θ=2cos2θ−1=1−2sin2θ sinα+sinβ=2sin12(α+β)cos12(α−β) cosα+cosβ=2cos12(α+β)cos12(α−β)
Triangles
- Law of sines:
asinα=bsinβ=csinγ - Law of cosines:
c2=a2+b2−2abcosγ - Pythagorean theorem:
a2+b2=c2
Series expansions
- Binomial theorem:
(a+b)n=an+nan−1b+n(n−1)an−2b22!+n(n−1)(n−2)an−3b33!+⋅⋅⋅ (1±x)n=1±nx1!+n(n−1)x22!±⋅⋅⋅(x2<1) (1±x)−n=1∓nx1!+n(n+1)x22!∓⋅⋅⋅(x2<1) sinx=x−x33!+x55!−⋅⋅⋅ cosx=1−x22!+x44!−⋅⋅⋅ tanx=x+x33+2x515+⋅⋅⋅ ex=1+x+x22!+⋅⋅⋅ ln(1+x)=x−12x2+13x3−⋅⋅⋅(|x|<1)
Derivatives
ddx[af(x)]=addxf(x) ddx[f(x)+g(x)]=ddxf(x)+ddxg(x) ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x) ddxf(u)=[dduf(u)]dudx ddxxm=mxm−1 ddxsinx=cosx ddxcosx=−sinx ddxtanx=sec2x ddxcotx=−csc2x ddxsecx=tanxsecx ddxcscx=−cotxcscx ddxex=ex ddxlnx=1x ddxsin−1x=11−x2√ ddxcos−1x=−11−x2√ ddxtan−1x=11+x2
Integrals
∫af(x)dx=a∫f(x)dx ∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx ∫xmdx ∫sinxdx=−cosx ∫cosxdx=sinx ∫tanxdx=ln|secx| ∫sin2axdx=x2−sin2ax4a ∫cos2axdx=x2+sin2ax4a ∫sinaxcosaxdx=−cos2ax4a ∫eaxdx=1aeax ∫xeaxdx=eaxa2(ax−1) ∫lnaxdx=xlnax−x ∫dxa2+x2=1atan−1xa ∫dxa2−x2=12aln∣∣x+ax−a∣∣ ∫dxa2+x2−−−−−−√=sinh−1xa ∫dxa2−x2−−−−−−√=sin−1xa ∫a2+x2−−−−−−√dx=x2a2+x2−−−−−−√+a22sinh−1xa ∫a2−x2−−−−−−√dx=x2a2−x2−−−−−−√+a22sin−1xa
No comments:
Post a Comment